DOORS DX

ベストなDXへの入り口が
見つかるメディア

【シリーズ】マーケティングDXの現在地 Vol.2「マーケティング×データ分析」の実践方法

公開日
2023.01.24
更新日
2024.08.08

近年「マーケティングDX」という言葉がトレンドになっています。実際に、マーケティング施策を検討する場合、顧客体験の向上面であらゆるデータを参照するといった動きがより重要性を増しています。

そこで、現場で最前線を走っているマーケターの方々をお招きし、抱えている課題や悩みの解決法など、マーケティングDXを進めていくためのTIPS(ヒント)をお話ししていくシリーズ「マーケティングDXの現在地」を企画しました。

連載記事

本記事では、長くアパレル企業で経験を積み、株式会社三陽商会ではデジタル戦略部門の責任者としてOMOやDXを推進し、様々なマーケティングツールの導入やデータ分析を指揮。2021年12月にファミリーマートに移籍後、デジタルコマースの新規事業を推進されている、株式会社ファミリーマート 安藤裕樹氏と、楽天グループ株式会社に在籍し、その後、旅行代理店のゆこゆこホールディングス株式会社にジョインし、マーケティング責任者として同社のマーケティングDXをリードした株式会社ブレインパッド マーケティング本部 小堺秀真による対談形式で、「マーケティング✕データ分析」というテーマでお話します。

※対談全文は動画でもご覧いただけます。

■登壇者

  • 安藤裕樹
    株式会社ファミリーマート

1992年に新卒で株式会社三陽商会に入社後、営業・MD・店舗運営など、多岐に渡る業務を経験。2001年に同社を退職後、さまざまなアパレル企業にてMD/ディレクター業務に従事。2006年からEC事業に携わり、大手通販会社やモール運営会社においてEC部門の責任者を歴任した後、2016年に三陽商会に復帰。同社内では、デジタル戦略部門の責任者としてOMOやDXを推進、様々なマーケティングツールの導入やデータ分析を指揮。2021年12月にファミリーマートに移籍後、デジタルコマースの新規事業を推進中。

  • 小堺秀真
    株式会社ブレインパッド マーケティング本部

TV番組制作会社に新卒入社。放送作家、取材作家として複数の番組を担当後、IT業界に可能性を感じ、転身。株式会社サイバードでモバイルコンテンツ事業を、楽天グループ株式会社で楽天市場事業、編成部、コンテンツ事業にて デジタルマーケ、コンテンツ開発、CRM、経営企画を約8年間担当。その後、JCOM株式会社にて事業企画、新規事業開発、ゆこゆこホールディングス株式会社ではマーケティング責任者として、800万会員向けマーケティング戦略実行を担当。2022年7月よりブレインパッドにジョイン。

※登壇者の所属部署・役職は取材当時のものです。

▼関連する資料ダウンロードはこちら

全4社の事例とDXリーダーの「格言」を収録。保存・配布に便利なリーフレット!

本記事の登場人物
  • マーケター
    小堺 秀真
    会社
    株式会社ブレインパッド
    所属
    XaaSユニット
    役職
    マネジャー
    TV番組制作会社に新卒入社。放送作家、取材作家として複数の番組を担当後、IT業界に可能性を感じ、転身。株式会社サイバードでモバイルコンテンツ事業を、楽天グループ株式会社で楽天市場事業、編成部、コンテンツ事業にて デジタルマーケ、コンテンツ開発、CRM、経営企画を約8年間担当。その後、JCOM株式会社にて事業企画、新規事業開発、ゆこゆこホールディングス株式会社ではマーケティング責任者として、800万会員向けマーケティング戦略実行を担当。2022年7月よりブレインパッドにジョイン。

顧客理解をするためには、より深いデータ分析が必要

株式会社ブレインパッド・小堺秀真(以下、小堺) 安藤さんは、1つの事象をかなり深いところまで認識し、データを分析して、そこから解を導き出してアウトプットにつなげていかれるというイメージがあります。そこで本日は、「マーケティング×データ分析」というテーマでお話しできたらと思っています。

写真左から、株式会社ブレインパッド・小堺秀真、株式会社ファミリーマート・安藤裕樹氏

株式会社ファミリーマート・安藤裕樹氏(以下、安藤氏 ) よろしくお願いいたします。マーケティングはやることが尽きず、どんどん深く広くなっているという状況です。その中で「マーケティングDX」というキーワードがここ数年出てきていて、すべての業界・企業に共通した最重要課題になっています。 

株式会社ファミリーマート・安藤裕樹氏

今までは「人材がいない」「マーケティングに力を入れていない」ことを理由に「マーケティングDX」を実践していなかったという企業も、もはや避けては通れません。逆に「マーケティングDX」を強化していかなければ生き残っていけない状況になっています。 

今回のテーマの「マーケティング×データ分析」では、この「×(掛け算)」が非常に重要だと思っています。マーケティングとデータ分析は別だと捉えられがちですが、マーケティングという企業にとってすごく重要な活動に対して、「データ分析を活用して精度を高めていく」と捉えた方がいいんじゃないかと思っています。

マーケティングの中には、プロモーションとかCRMとか様々な切り口があると思いますが、すべてをデータ分析にもとづいて進めて行くことで、より効果的なマーケティングが実践できると思います。

マーケティングとデータ分析、この2つを別に考えてしまうと「CRMよりもプロモーションの方が即効性があるんじゃないか」といった議論になりますが、結果的には「どちらが大事」ということではなく「どちらも大事」です。

そういう意味では、今はデータ分析をうまく使って、いろいろなことをやっていきましょうというスタート地点にいるんじゃないかなと思っています。

小堺 マーケティングというと幅広いですが、マーケター、つまり現場の人間はデータを見ながらじゃないと、もう業務ができないというところまで来ていて、安藤さんのおっしゃるとおり、必要不可欠だなと思います。 

「売上・客数予測による販促計画策定」など5つの成功事例を収録

データ分析による顧客理解の具体例

小堺 実際に安藤さんがキャリアを積まれる中で、「こんなデータを見てきた」「こういうアプローチでデータを見てきた」というところを、具体的に教えて頂けますか。

安藤氏 一般的に「データ」というと、リアル店舗で言えば「POSデータ」、ECで言えば「ログデータ」などが重視されます。これらはイメージしやすいデータだと思います。

でも、マーケティングに使おうとした場合は、単体のデータだと十分ではないと感じています。 

店舗内の行動とか、ECサイト内の行動などを見るときには、単純に売上データを見るだけといったことはしませんでした。どんなお客様が、具体的にどんな行動を取ったのかという、顧客分析につながるデータを見るために、いくつかのデータをかけ合わせて見ることを意識し、注力していました。 

小堺 やはりお客様の行動を可視化するためには、いろんなデータを見ないといけないということですね。 

安藤氏 そうですね。実際には顧客データと言いながらも、POSデータやログデータには会員データと紐づかないデータもたくさんあります。それらも含めて、データで見えているお客様と見えていないお客様の違いのようなものを探したりします。データが見えているお客様に対しての深掘りの方法もいろいろあると思います。 

ユーザーのことを意識しないと、どうしても「商品が何個売れたか」とか、「セッションがこれだけあった」などといったボリュームのあるデータだけをいじりがちなので、基本的にはその先にある「お客様」という、「購買行動をしてくれた」、または「買ってはいないけど見に来てくれた・触ってくれた」方をどう捉えるかを意識してデータを見ていましたね。

 小堺 なるほど。「コンバージョンした」とか「実際に購入した」という、具体的なアクションのところに目が行きがちだけれども、そこに付随するところから因数分解して捉えていく、というお話だと理解しました。そこを少し違う角度から、もしくは違うデータから紐づけて見ることによって、お客様ならではの価値を見出していくということですかね。 

株式会社ブレインパッド・小堺秀真

安藤氏 そうです。やはりPOSデータというのは、我々ファミリーマートにとっても非常に重要なデータです。「何がいつ何個売れたか」というデータは、我々が商品を企画したり、生産したりするにあたっては、非常に大きく重要なデータですし、大きなウェイトを占めます。 

しかし、商品を誰かが買ったから売上が出てくるわけで、POSデータばかりに着目し過ぎると、その製品の良し悪しだけを追いかける形になります。それだと、お客様が求めているものとずれてくるといったことが起きるので、お客様がどんな行動をしたかには着目したいと思います。 

小堺 今日のお話もそうですが、以前に安藤さんとお話ししていたイメージ通り、ロジカルに、データというものと真摯に向き合いながら、また、データを俯瞰的に捉えながら、施策に結びつけようとされる思いを感じます。

この考え方は、どのタイミングから始められたのでしょうか。 

安藤氏 多分、可視化されたデータが無い時代から、お客様にちゃんと向き合うことが重要だと感じていましたし、昭和世代の僕らから言うと、売れている商品を「正」の字をつけて管理していたような時代もありました。そのときに気づいたのですが、売れたものはわかるんだけど、売れなかったものはPOS上のデータでも「売上ゼロ」と出るだけなんですよね。ただ、実際には売れなかった理由があるというところに着目すると、お客様に理由を聞いてみたくなるじゃないですか、それがきっかけですね。以前から、販売員さんや店頭のお客様に話を聞いてみたり、アンケートを取ったりはしていましたが、今では、会員データとか顧客データとかログデータなど、全てのデータではないですが可視化できたり、可視化することで予測・予想ができるようになってきています。

使えるデータの量や、それを可視化・分析するツールは増えてきていましたが、「お客様を知りたい」という気持ちはずっと変わらず、顧客理解という考え方自体を常に持つようにしています。

小堺 お客様のことを考え続けているとデータに突き当たって、それをいかに分析するかによってさらにお客様に近づいていける、それが最良の顧客体験につながるということだと理解しました。 

データとの向き合い方:「何を見るか」ではなく、「何のために見るか」

小堺 特に最近、どんどんデータの量が増えているじゃないですか。どこまでを把握して、どうやってそれを分析するのか、具体的な手法も含めて、どのように分析されていたのでしょうか。

安藤氏 まず、量が多いことは別に悪いことではないです。処理の話になるとデータの量が多いことは負荷になったりしますけど、データは多いに越したことはないです。 

「何を見るか」ではなく、「何のために見るか」が必要じゃないかと思っています。もちろんデータを分析するのは大事なことではありますが、データは分析すること自体が目的ではなくて、「その後どうするか」ということにつながるかどうかが大事だと思っています。 

僕自身では、「データの扱い方」というよりは「データとの向き合い方」と言っているのですが、大きく3つにわけて、自分なりの視点を持っています。 

1.まずはデータを分析する前に結果を自分なりに予測・予想してみること。

2.常に結果に対して「なんで?」を意識すること。もちろん予想通りにならなかったら「なんで?」と考えますが、予想通りになったとしても、「なんで?」予想通りだったのかを突き詰めることが大事です。

例えば、導き出された答えは予想通りだったけど、実は設定していた変数は予想と違っていて、その違っている変数の掛け算によって出てきた結果が”予想通り”だったとしても、その答えでは仮説と打ち手が変わるということが考えられます。売上が「上がるか上がらないか」が答えで、売上を上げたい施策が変数だとしたら、お客様にとって適切な施策を間違える可能性があります。必ず「なんで?」そうなったのかを突き詰めるようにしています。 

3.施策に繋がらないデータの深堀りはしない。データの量が多いと、クラスタリングやカテゴリー分けなどをして階層が深くなることがあります。でも限られた時間の中で、効果的な分析をして施策にまで繋げないといけないので、結果的に施策に落とせないようなデータの深掘りはしないようにしています。

データを見ていると、面白くなって更に深掘りしたり、自分の興味で細分化したりしてしまうこともあるのですが、その後につながらないところに時間をかけることは、今は正直できないので、ある程度は割り切りも必要だと思っています。なので、施策につながらないところは深追いしません。

ただ、興味を持って深掘りした先に見えてくる発見もあるので、本来はもっと深堀りしたいというジレンマはあります。

小堺 ありがとうございます。もちろん全量データは大事で、データが多いことも大事ですが、その中からいかにマーケターが取捨選択をしながら、お客様にとって最適なデータを選んでいくのか、そこには捨てるデータももちろんあるということを理解しました。 

多分、データをどう使えばいいのかわからないというマーケティング担当者もすごく多いと思うので、彼らにとってもいいアドバイスになるんじゃないかと思います。 

安藤氏 捨てると言うと語弊があるかもしれないですが、フォーカスする部分は決めないといけないということと、データ量が多い・少ない、可視化できるツールがある・ないではなく、お客様の何を知りたいのか、皆さんそれは必ずあるはずなんです。

「知りたいことのために、必要なデータは何なのか?」、そう考えていかないといけません。例えば、項目分けや会員のランク付けなど、お客様を何らかの形で分けてデータを見る際にも、「知りたい事のための必要なデータって何?」という基準がないと、「分けた後どうするんだっけ?」みたいな話になってしまいます。

本当は分けることが目的ではなくて、その後に個別の施策を行うために分けるはずです。うまく分けたり、きれいに分けることが目的ではありません。実際、そこに区別すべき明確なラインがあるわけでもありません。

先ほども言ったように、複数の要素をかけ合わせてデータを見ないといけません。あまり近視眼的にデータ分析をするよりは、「お客様に対してどういうアプローチをしたいのか?」、「そのためにはお客様の何を知りたいのか?」ということを考えるのが大事かなと思います。 


データ分析を施策に落とし込む~課題と解決法~ 

小堺 ありがとうございます。今お話し頂いた、データを俯瞰的に見つつ、絞っていきながら当たりをつけて、そこから予知・予測をし、モデリングをしていって、お客様にとって最適な施策を最短で導き出すといった話は、マーケターに対していい示唆になると同時に、ぶつかる壁だったりもすると思っています。

お客様のデータの見える化・活用ができるということについて、安藤さんならではの手法を教えて頂けますか。

安藤氏 過去、僕がやってきたこともそうなんですけど、実際はやっぱり考える時間よりも作業する時間の方が多くなっちゃうケースが多いです。

どうやって効率化するか、当然そこには外部の活用だとかツールの導入もあるのですが、逆にそちらにばかり頼って、作業は減って時間もできたけど、何をやっていいのかわからなくなる…といったことも起きがちです。

やっぱりお客様に対してやりたいことを解決するためにどういう分析が必要で、それは自分でできることなのか、そうではないのか。そうでない場合、例えば外部のコンサルティングが解決できるものなのか、ツールを導入したら解決できるのか、といったことを考える必要があります。

「今どんな課題があって何をしたいのか」という現場の意見を聞きながら、お客様・会社のためになるのかどうかを、きちんとマネジメントの人間が把握して、現場とのコミュニケーションをとったうえで外部に頼るかどうかを判断することも大事かなと思っています。 

小堺 実際に、現場とのコミュニケーションを含めて、データを扱いながら、「マーケティングDX」をチームとして指揮されて導いていかれた安藤さんのお立場から聞かせてください。やはりデータは見方によってはいろいろ可変するじゃないですか。安藤さんが見てきた、見ようとしていたデータと違う物が出てくるときもあると思います。そういうときに、安藤さんならどういうふうにデータを分析してゴールに導くのか、そのプロセスの秘訣を教えてください。

安藤氏 こうすれば絶対いい解が導ける、という答えはないですが、よくデータを分析した結果が出たものの、思っていたものと少し違う、みたいなことってあったりすると思うんです。 

そもそも「なんで?」という話に通じますが、見ているデータは同じはずだけど、解釈が違ってくる理由は、データの見方や視点の問題ということがあります。今、そのデータを横から見ているのか上から見ているのか、今見なければいけないのはどちらからなのか、もしくは両方からなのか、みたいなところをちゃんとすり合わせておかないと、良くも悪くも自分なりに解釈して分析してしまいます。分析自体は間違っていないけど方向が違うということがあったりします。

現場のメンバーでもそうなんですけど、その辺をちゃんと示してあげないと、すごいしっかり分析に取り組んで出てきたデータが、やりたかったこととは違うといったことが起きたりする。 

もちろん、そうやって分析したこと自体は無駄にはならないけど、やはり時間が少ない中で、他にもいろんなことをやってもらわなければいけないときに、組織の中でメンバーに丸投げしてしまうような状態は作らないようにしないといけない。「こういう意図でこういうことを知りたい」「こういう視点で分析してくれ」と、明確に伝える必要があります。  

なので、「こういうことを知りたいから、こういう視点で分析してほしい」とちゃんと言ってあげないと、出てきた解も読み取れないし、依頼を受けた側も結局「考えてくれ」と言われているものの、作業に終始してしまいます。 

考えるヒントも与えて出てきた答えに対して、また、指示したことと導き出されたデータ・解について、みんながその過程も含めて理解できることが、メンバーや部署の成長につながるんじゃないかなと思っています。 

小堺 なるほど。データというものを介するんだけど、コミュニケーションということですね。メンバーが上げてきてくれるデータの精度を上げるためにも、ちゃんと相手方にわかりやすいデータの渡し方、説明の仕方をするということでしょうか。

安藤氏 その通りです。これはデータ分析に限らず、資料作成などでも同じです。「なんか作っといて」と依頼すると、上がってきたものが「なんか違う」みたいな話があったりします。 

ただあまり具体的に伝えすぎると、メンバーがただ代わりに作業するだけになってしまうので、やっぱり常に考えてもらって対応してもらい、お互いが「なるほど」と思えるようにしています。 

そうすると、中には要求以上の解を持ってきてくれる人が出てきます。それはやっぱり扱っている事に対しての楽しさからうまれるものです。

施策もそうですけど、いくらデータを分析して仮説を立てても当たらないこともありますし、実際当たらないことのほうが多いくらいです。ただ、そこでめげないことが大事です。 

よく「失敗じゃなくて学びだ」という話がありますけど、「なんで?」ということを考えると、仮説のここが間違っていたとか、当てる人を間違えたとか、示唆が得られます。失敗して終わりではなく、次につなげる必要があります。 

データ分析から精神論的な話になってしまいましたが、そういう取り組み方をしてもらわないと、DXは進まないんじゃないかと思います。ツールが充実しても、使う人の気持ちが温まっていないと、作業で終わってしまう気がします。 

データ分析・活用の未来 

小堺 ありがとうございます。データ分析という文脈から拡大したところまで含めて伺ってきました。

データは嘘をつかない。一方で、データを上手く見ることが重要だと思っています。今後は、データ自体がより増え、より高度な分析が必要になってくると思います。 

マーケターが「マーケティングDX」から逃れられない中で、気をつけるべき点など、安藤さんなりのアドバイスをいただけますか。

安藤氏 最初に言った通り、もう「マーケティングDX」からは逃げられない。逃げられないなら追いかけた方が良いなと思っています。今なら伴走してくれるツールや企業さんもいっぱいあるので、そこをうまく使いながら対応していくのが良いと思っています。

結局、データ分析だけで解決できることはありません。ただ、顧客を理解するために必要なことだという認識が大前提であって、顧客の理解をせずに企業の都合で、例えばバルク配信のメールや統一したプロモーションを実施しても反応は落ちているというのは、現場の担当者はもう気づき始めています。

一方で、アメリカのある調査では、約8割の消費者が「自分のことを理解し、気にかけてくれる企業を選びたい」と回答しています。要は「自分のことを分かってサービスしてくれる」という期待は、顧客の方も高まっています。

企業目線のパーソナライズではなく、お客様のことを理解した上でそれぞれに適切なパーソナライズをしようとする際には顧客理解が重要で、その分析をする為には、もはやExcelで作業できる範囲ではありません。デジタルの力を使って、とにかく可視化、分析、集計のスピードを速くしていくことが、顧客理解を深める最短の方法じゃないかと思っています。 

小堺 まさに、お客様の感情の変化のスパンが速くなっているというところを捉えて、データを見ながら「マーケティングDX」を支援していくことが、我々の使命だと思っています。

安藤氏 実際、顧客理解の分析としてアンケートやNPSの分析調査なども行っていますが、それを見るだけでは見つけにくいデータもあります。過去ブレインパッドさんとVizTactというツールを使ってNPSデータ分析を行い、ブランドやプロモーションの効果との相関が高いという予想通りの結果は見ることができたのですが、一方でカスタマーサポートの満足度とNPSスコアの関連性が高いという結果が得ました。この結果は今までなんとなく思っていたことが、ツールやデジタルの力を使うことで可視化され、気づきを得ることができた事例でした。

マーケターがやることは顧客の満足度を上げていく為の顧客理解なので、データを見ながら顧客を理解したいという気持ちを常に持つことが重要です。 

※「BrainPad VizTact」は2024年7月末に提供終了

小堺 本日は、さまざまな観点でお話しいただき、本当にありがとうございました。

【シリーズ】マーケティングのDXの現在地

関連記事

この記事の続きはこちら

【シリーズ】マーケティングDXの現在地 Vol.3「マーケティングの組織づくり」



このページをシェアする

株式会社ブレインパッドについて

2004年の創業以来、「データ活用の促進を通じて持続可能な未来をつくる」をミッションに掲げ、データの可能性をまっすぐに信じてきたブレインパッドは、データ活用を核としたDX実践経験により、あらゆる社会課題や業界、企業の課題解決に貢献してきました。 そのため、「DXの核心はデータ活用」にあり、日々蓄積されるデータをうまく活用し、データドリブン経営に舵を切ることであると私達は考えています。

メールマガジン

Mail Magazine